
IDEaL
An IDE for all Learners

Monique Amrita
PM/EngineerEngineer

Hello World!

Jin-Hee
Designer

Neel
PM

Our Team

Passion for CS Education
~10 years total experience as tutors, SLs, TAs,
and head TAs, with a focus on intro CS courses

Diversity in Experience
Prior academic and internship experience in
product management, design, and SWE roles

Software Development Background
Experience developing large software projects in a
variety of languages, as well as tackling CS security +
AI model development challenges

Learning to code can be a frustrating,
overwhelming, and discouraging experience.

Pain Points:
● Incomprehensible error messages
● Complicated, feature-heavy IDEs
● Domain-specific jargon → high barrier to entry

Desires:
● Prioritization of code style/efficiency
● Help in learning language idioms

Problem

“I was nervous going into [intro] classes because I feel like I don’t have a ton of CS background, and everyone else does.”
“It can be tough to figure out why my computer is struggling to run programs - is it something inefficient in my code?”

“I don’t want an error message that just tells me what line an error is at…Name the variable. Say specifically what is bad.”

Solution
IDEaL - An educational IDE for all
programming learners.

We make the process of learning to code less
overwhelming, providing students with an
understandable, encouraging, and fun way to
program. Our solution offers:

● Support with deciphering opaque errors
when debugging

● Simple and easy-to-use interface
● Learn-as-you-go integrated programming

lessons/resources

Happy Path
When coding… I can see what isn't working… Have the understanding to fix it… Then fix it and learn!

Key Product Features
● Simple, working IDE with the following learning-friendly features

● Error messages with "plain English," beginner-friendly wording

● On-the-fly style tips so you can improve style as you're coding

● A place to review conceptual material that’s relevant to the
course/current assignment

● A way to keep "sticky notes" for key learnings

Market Fit (TAM/SAM/SOM)
● There were 26.8 million active software developers in the world

at the end of 2021.

● Obtainable market: students studying CS at Stanford.
○ ~10% of students who take CS106A/B → ~360 people.

● ~1200 students per quarter across both classes → ~3600 for
the whole year.

Competitive Landscape

● Main competitors in the space include:
○ VSCode
○ Sublime Text
○ JetBrains

● Data mining across VSCode has been subject to criticism (CoPilot)

● No one focuses on beginning programming (yet)

Business Model - Prosumer

Community Institutional Institutional+
Free offering with key
features (e.g. friendly

errors, style feedback,
crowdsourced lessons).
Students contribute to

feedback dataset

Adds limited course
integration with grading,

student submission storage,
course resources, integrity

checkers (e.g. MOSS)

Adds full course integration
with live TA debugging

session support, analytics on
course and assignment

performance

$0 $2.50 per student per course
annually

$5 per student per course
annually

Projected Revenue

Community Institutional Institutional+

Free!

Assuming 20 courses at each
university and ~200

students/course

$10,000/yr/school

Assuming 20 courses at each
university and ~200

students/course

$20,000/yr/school

Traction
Right now…

- A handful (~40-50) CS106
students we've interviewed have
expressed strong interest in this
support from an IDE

- No formal plan / signup

- Raised discussion with Stanford's
intro CS faculty → interest

- Growing frustration with IDEs
like Qt already

Looking ahead…

- Maintain discussion with Stanford
CS faculty

- Beta testing on CS106 students

- Test and make improvements
before official partnerships

- Introduce to section leaders *

- Branch out to intro CS at other
institutions nearby, likely Cal, SCU

Projections
● Current: proof of concept shown, interviews done, revenue

models built out

● In next 6 months: build out MVP, ship as VSCode / Sublime
extension

● In next 12 months: secure funding, build standalone application
for macOS, Linux, and Windows

● In next 18 months: Sell to consumers, universities. Ship V2 of
product with enhanced feature set and specific settings for
university clients

Funding and Resource Request
Needs:

- Engineering staff: 3 engineers to start
- Marketing to universities: 5 employees on marketing team
- Design of application: 3 designers working on MVP to pitch to

investors

Estimate in seed funding: $3M

Appendix

Ethical Concerns
Quality of education

- What is the source of the educational content? Is it true, up-to-date, etc?

Partnering with universities / learning institutions
- Who ultimately controls the content on IDEaL? What if we disagree?

Accessibility
- When implementing the technological features such as sticky notes or

supplemental error messages, can they be found and read by a
text-to-speech, for example?

Traditional pedagogy and progress
- Are we assuming that our way of learning will work for everyone instead

of working the other way around?

Role Prototype (Cards)

Role Prototype (Insights)

Our top 3-5 synthesized insights:

● Error readability can greatly affect a beginner’s motivation level/dedication to
continuing CS.

● On-the-fly conceptual reminders are very helpful, especially because our
interviewees liked to fix their code as they go instead of having to go back at
the end to fix things.

● People want fast/”instant” access to conceptual material that would be most
helpful to them for their assignment.

Our product’s value comes from being a text editor that lets you learn as you go. A typical user could be
a CS106A student. When the 106A student starts an assignment using our IDE, they’ll have immediate
access to the lectures and course notes relevant to the assignment they’re currently working on. As
they begin coding, the IDE will highlight any style issues alongside a suggestion on how to improve it,
which allows the user to fix their style in the process, instead of having to go back and potentially getting
lost in their own code. Any errors will also be flagged and explained in “readable”, plain English, which
lets the user thoroughly understand the mistake they made, and how to avoid repeating that problem.
The user has the option of making “sticky notes” to jot down anything they want to remember, such as a
mistake they’ve formerly made, or specific syntax they constantly forget, etc. Weak signals that indicate
our product’s value would include some usage of the sticky notes. Although the user may not be using
the sticky notes frequently, the fact that they’re utilizing the sticky feature at all indicates that the user
does want the option to keep their own notes (in their own words) in addition to the help that the IDE
provides. Strong signals that indicate value include high retention in the IDE (e.g., not frequently clicking
out or for long periods of time) since the user no longer has to heavily google the meaning of error
messages and less repeated style issues, which means that the user is actively reading the style
suggestions and correctly implementing the advice as they move forward. After all of our assumption
and experience prototype testing, the features we will include in our GTM strategy include 1) readable
error messages, 2) style suggestions, 3) relevant conceptual notes, 4) sticky note features. These four
key features were proven to make the IDE valuable for the user, as they effectively assist the user’s
learning without being overwhelming.

Role Prototype

Look and Feel Prototype Demo
and Regular Figma

https://www.figma.com/proto/ghPjnwTChMUWKvHjVpEi6W/CS-177-Look-and-Feel?node-id=14%3A5&scaling=scale-down&page-id=1%3A2&starting-point-node-id=14%3A5
https://www.figma.com/file/ghPjnwTChMUWKvHjVpEi6W/CS-177-Look-and-Feel?node-id=1%3A2&t=lCEM5wyC6Fplgh04-1

Design
Looking to popular IDEs with a slick look such as VSCode and Sublime, we stuck with a
simplistic IDE layout with just the basics on the screen to start with: the file you're in, the
code you're writing, the line numbers, and the buttons you need to make stuff run.
We also used popular learning companies such as Khan Academy or Duolingo to motivate
our color selection in our style tile, ultimately opting for a mostly black/white/gray/blue
palette with touches of green and yellow.
In an IDE, seeing errors is the most important thing, and we didn't want too much color to
take away from that. Thus, most of the screen is dark gray / white depending on the
user's selection of "dark mode" or "light mode."

Product Branding
Since the learning-focus is what sets us apart from other IDEs, it made sense to heavily
emphasize this in our branding: from the product name to what to put on the loading
screen as the app was firing up to how we will brand ourselves in pursuit of customers.

Design Justification

Implementation Prototype Demo
Tech Stack: TypeScript, VSCode Extension API,
Python, Shell scripting

Justification:
Our spike prototype showcases a key feature of our
product - automated error message translation. As
an MVP, we created a VSCode extension with this
component of our idea, leveraging the VSCode
Extension API to demonstrate feasibility of our spike
feature alone rather than a full standalone IDE. The
extension detects any errors in student-written
Python code and presents the user with a simple,
understandable version of this error with debugging
advice for beginner coders.

https://docs.google.com/file/d/1zcXWEoz19CmwdG0tZSExNC1xNVRj7w4B/preview

Implementation Prototype Writeup
- Started by building a CLI tool to parse error messages into

simpler, more readable messages
- Focus on 3-4 of the most common Python/C++ error

messages to start
- Take CLI tool and package into a VSCode extension
- Use HTML and CSS to add graphics to make the popup more

engaging
- Test in development environment to make sure specific error

messages are being parsed correctly

MVP
- Simple, working IDE with the following learning-friendly features:

- Error messages with "plain English," beginner-friendly wording
- On-the-fly style tips so you can improve style as you're coding
- A place to review conceptual material
- A way to keep "sticky notes" for key learnings

Customers, Customers, Customers!
- We will build strong, feedback-friendly relationships with our starting partnership

(Stanford CS program) to build up our reputation
- As we expand, get connections from faculty members

- Student and faculty word-of-mouth
- Converting customers: discuss time saved for graders, office hours, students who

are frustrated
- Retaining customers:

- Quarterly check-ins with programs to see what's working / not
- Expanding team of engineers to ensure high + improving performance

Go-To Market Plan

User Story Mapping

Key Assumptions

BMC

VPC

All Tests/Interviews
By Team Member Conducted:

Jin-Hee + Monique:
- Priority testing with 2 individuals: Sanjay, Victoria
- Experience prototype tests with 6 individuals: Natalie, Tom, Sarah, Mason, Sam, Andrew

Jin-Hee:
- Needfinding interviews with 5 individuals: Momo, Michael, JD, Isabelle, Grant

Monique:
- Needfinding interviews with 5 individuals: Arthur, Sarah, Brian, Zoe, Claire

Neel:
- Needfinding interviews with 4 individuals: Julie, Cynthia, Lucia, Tobey
- Experience prototype testing with 2 individuals: Danny, Andrea

Amrita:
- Needfinding interviews with 4 individuals: Sumer, Megan, Anisha, Catherine

Thank you!

